

## FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2014

Roll Number

## **APPLIED MATHEMATICS, PAPER-I**

| TIME AL                                  |                                             | MAXIMUM MARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5: 100       |
|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| NOTE:(i)<br>(ii)<br>(iii)<br>(iv)<br>(v) | Attem<br>questi<br>No Pa<br>be cro<br>Extra | e must write <b>Q.No.</b> in the <b>Answer Book</b> in accordance with <b>Q.No.</b> in the <b>Q.Paper.</b><br><b>FIVE</b> questions in all by selecting <b>THREE</b> questions from <b>SECTION-A</b> and '<br>from <b>SECTION-B. ALL</b> questions carry <b>EQUAL</b> marks.<br>(Space be left blank between the answers. All the blank pages of Answer Book<br>d.<br>empt of any question or any part of the attempted question will not be considered.<br><b>alculator is allowed.</b> | TWO          |
|                                          |                                             | SECTION-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Q. No. 1.                                | (a)                                         | ove that $curl(W\vec{F}) = (gradW) \ge \vec{F}$ . If $\vec{F}$ is irrotational and $W(x, y, z)$ is a scalar notion.                                                                                                                                                                                                                                                                                                                                                                      | (10)         |
|                                          | (b)                                         | thermine whether the line integral:<br>$2xyz^2dx + (x^2z^2 + zCosyz)dy + (2x^2yz + yCosyz)dz$ is independent of the<br>th of integration? If so, then compute it from (1,0,1) to $(0, \frac{f}{2}, 1)$ .                                                                                                                                                                                                                                                                                 | (10)         |
| Q. No. 2.                                | (a)<br>(b)                                  | ate and prove Stoke's Theorem.<br>Theorem for the function $F = x^2 i - xy j$ integrated round the plane z=0 and bounded by the lines $x = y = 0$ , $x = y = a$ .                                                                                                                                                                                                                                                                                                                        | (10)<br>(10) |
| Q. No. 3.                                | (a)<br>(b)                                  | ree forces act perpendicularly to the sides of a triangle at their middle points<br>d are proportional to the sides. Prove that they are in equilibrium.<br>ree forces P, Q, R act along the sides BC, CA, AB respectively of a triangle<br>BC. Prove that, if P Sec A + Q Sec B + R Sec C = 0, then the line of action of<br>e resultant passes through the orthocentre of the triangle.                                                                                                | (10)<br>(10) |
| Q. No. 4.                                | (a)<br>(b)                                  | In the centroid of the surface formed by the revolution of the cardioide $= a(1 + Cos_{\pi})$ about the initial line.<br>Uniform ladder rests with its upper end against a smooth vertical wall and its of on rough horizontal ground. Show that the force of friction at the ground is $W \tan_{\pi}$ , where W is the weight of the ladder and $_{\pi}$ is its inclination with the rtical.                                                                                            | (10)<br>(10) |
| Q. No. 5.                                | (a)<br>(b)                                  | fine briefly laws of friction give atleast one example of each law.<br>uniform semi-circular wire hangs on a rough peg, the line joining its<br>tremities making an angle of $45^{\circ}$ with the horizontal. If it is just on the point<br>slipping, find the coefficient of friction between the wire and the peg.                                                                                                                                                                    | (10)<br>(10) |

## **SECTION-B**

- **Q. No. 6.** (a) If a point P moves with a velocity v given by  $v^2 = n^2(ax^2 + 2bx + c)$ , show that P (10) executes a simple harmonic motion. Find the center, the amplitude and the time-period of the motion.
  - (b) A particle P moves in a plane in such a way that at any time t its distance from a fixed point O is  $r = at+bt^2$  and the line connecting O and P makes an angle  $\int_{a}^{\frac{3}{2}} with a$  fixed line OA. Find the radial and transverse components of the

 $_{u} = ct^{2}$  with a fixed line OA. Find the radial and transverse components of the velocity and acceleration of the particle at t = 1.

**Q. No. 7.** (a) A particle of mass m moves under the influence of the force (10)  $F = a(i Sin \check{S}t + j Cos \check{S}t)$ . If the particles is initially at rest on the origin,

prove that the work done up to time t is given by  $\frac{a^2}{m\tilde{S}^2}(1-\cos\tilde{S}t)$ , and that

the instantaneous power applied is  $\frac{a^2}{m\check{S}^2}Sin\check{S}t$ .

(b) A battleship is streaming ahead with speed V, and a gun is mounted on the battleship so as to point straight backwards, and is set an angle of elevation a, if  $v_o$  is the speed of projection relative to the gun, show that the range is  $\frac{2v_o}{g}Sin\Gamma(v_oCos\Gamma - V).$  Also prove that the angle of elevation for maximum

 $\frac{g}{g}$ 

range is  $\operatorname{arcCos}\left(\frac{V-\sqrt{V^2-8v_0^2}}{4v_0}\right)$ .

- **Q. No. 8.** (a) Show that the law of force towards the pole, of a particle describing the curve (10)  $r^n = a^n \cos n_n$  is given by  $f = \frac{(n+1)h^2 a^{2n}}{r^{2n+3}}$ .
  - (b) A bar 2 ft. long of mass 10 Ib., lies on a smooth horizontal table. It is struck horizontally at a distance of 6 inches from one end, the blow being perpendicular to the bar. The magnitude of the blow is such that it would impart a velocity of 3 ft./sec. to a mass of 2 Ib. Find the velocities of the ends of the bar just after it is struck.

\*\*\*\*\*